3,485 research outputs found

    Pan-America and International Law

    Get PDF

    Catholic Church and Peace Efforts

    Get PDF

    Prerequisites of Peace

    Get PDF

    Non-equilibrium transport through a disordered molecular nanowire

    Get PDF
    We investigate the non-equilibrium transport properties of a disordered molecular nanowire. The nanowire is regarded as a quasi-one-dimensional organic crystal composed of self-assembled molecules. One orbital and a single random energy are assigned to each molecule while the intermolecular coupling does not fluctuate. Consequently, electronic states are expected to be spatially localized. We consider the regime of strong localization, namely, the localization length is smaller than the length of the molecular wire. Electron-vibron interaction, taking place in each single molecule, is also taken into account. We investigate the interplay between disorder and electron-vibron interaction in response to either an applied electric bias or a temperature gradient. To this end, we calculate the electric and heat currents when the nanowire is connected to leads, using the Keldysh non-equilibrium Green's function formalism. At intermediate temperature, scattering by disorder dominates both charge and heat transport. We find that the electron-vibron interaction enhances the effect of the disorder on the transport properties due to the exponential suppression of tunneling

    Aharonov-Bohm effect for an exciton in a finite width nano-ring

    Get PDF
    We study the Aharonov-Bohm effect for an exciton on a nano-ring using a 2D attractive fermionic Hubbard model. We extend previous results obtained for a 1D ring in which only azimuthal motion is considered, to a more general case of 2D annular lattices. In general, we show that the existence of the localization effect, increased by the nonlinearity, makes the phenomenon in the 2D system similar to the 1D case. However, the introduction of radial motion introduces extra frequencies, different from the original isolated frequency corresponding to the excitonic Aharonov- Bohm oscillations. If the circumference of the system becomes large enough, the Aharonov-Bohm effect is suppressed

    Prerequisites of Peace

    Get PDF

    Ethical Basis of International Law

    Get PDF

    The Anderson model of localization: a challenge for modern eigenvalue methods

    Get PDF
    We present a comparative study of the application of modern eigenvalue algorithms to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation is faster and more memory efficient than the other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue algorithms.Comment: 16 LaTeX pages with 3 figures include
    corecore